Final Exam — Functional Analysis (WBMA033-05)

Wednesday 28 June 2023, 8.30h-10.30h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 points)

Recall the following linear space from the lecture notes:

$$\ell^1 = \left\{ x = (x_1, x_2, x_3, \dots) : x_k \in \mathbb{K}, \sum_{k=1}^{\infty} |x_k| < \infty \right\}.$$

We can equip this space with the following norms:

$$||x||_1 = \sum_{k=1}^{\infty} |x_k|$$
 and $||x||_w = \sum_{k=1}^{\infty} e^{\sin(k)} |x_k|$.

Show that these norms are equivalent.

Problem 2 (10 + 5 + 10 + 5 = 30 points)

Consider the following linear operator:

$$T: \mathcal{C}([0,1],\mathbb{K}) \to \mathcal{C}([0,1],\mathbb{K}), \quad Tf(x) = f(x^2).$$

On the space $\mathcal{C}([0,1],\mathbb{K})$ we take the sup-norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

- (a) Compute the operator norm of T.
- (b) Show that $\lambda = 1$ is an eigenvalue of T.
- (c) Show that T is invertible.
- (d) Is T compact?

Problem 3 (10 + 10 = 20 points)

Let X be a Hilbert space over $\mathbb{K} = \mathbb{C}$ and let $T \in B(X)$ be of the form $Tx = \langle x, u \rangle v$, where $u, v \in X$ are nonzero.

- (a) Show that $T^*y = \langle y, v \rangle u$ for all $y \in X$.
- (b) Assume that u = cv for some $c \in \mathbb{C}$. Show that T is selfadjoint if and only if $c \in \mathbb{R}$.

Turn page for problems 4 and 5!

Problem 4 (10 + 5 = 15 points)

- (a) Let X and Y be Banach spaces, and let $T: X \to Y$ be a linear operator. Prove that the following statements are equivalent:
 - (i) T is bounded;
 - (ii) if (x_n) is a sequence in X such that $x_n \to 0$ and $Tx_n \to y$, then y = 0.

Hint: use the Closed Graph Theorem.

(b) Now assume that X is a Hilbert space over $\mathbb C$ and that the linear operator $T:X\to X$ satisfies the following property:

$$|\langle Tx, z \rangle| \le ||x|| \, ||z||$$
 for all $x, z \in X$.

Use part (a) to prove that T is bounded.

Problem 5 (15 points)

Equip the linear space $X = \mathcal{C}([-1,1],\mathbb{C})$ with the following norm:

$$||f|| = \int_{-1}^{1} |f(x)| dx, \qquad f \in X.$$

Let $g(x) = e^{-5ix}$. Prove that there exists a functional $\varphi \in X'$ such that

$$\varphi(g) = 6 + 4i$$
 and $\|\varphi\| = \sqrt{13}$.

Solution of problem 1 (10 points)

Let $x \in \ell^1$ be arbitrary. Note that for all $k \in \mathbb{N}$ we have $-1 \leq \sin(k) \leq 1$ and therefore

$$e^{-1}|x_k| \le e^{\sin(k)}|x_k| \le e|x_k|.$$

(5 points)

Summing over all $k \in \mathbb{N}$ gives

$$e^{-1} \sum_{k=1}^{\infty} |x_k| \le \sum_{k=1}^{\infty} e^{\sin(k)} |x_k| \le e \sum_{k=1}^{\infty} |x_k|,$$

which shows that $e^{-1}||x||_1 \le ||x||_w \le e||x||_1$. Since $x \in \ell^1$ is arbitrary, this precisely means that the two norms are equivalent.

Solution of problem 2 (10 + 5 + 10 + 5 = 30 points)

(a) Since the function $x \mapsto x^2$ maps the interval [0, 1] bijectively onto itself we have

$$||Tf||_{\infty} = \sup_{x \in [0,1]} |Tf(x)| = \sup_{x \in [0,1]} |f(x^2)| = \sup_{x \in [0,1]} |f(x)| = ||f||_{\infty}.$$

(7 points)

Therefore, the operator norm of T is given by

$$||T|| = \sup_{f \neq 0} \frac{||Tf||_{\infty}}{||f||_{\infty}} = 1.$$

(3 points)

- (b) The equality $f(x) = f(x^2)$ holds for all constant functions. Therefore, any nonzero constant function f is an eigenvector for the eigenvalue $\lambda = 1$. (5 points)
- (c) Consider the operator

$$S: \mathcal{C}([0,1],\mathbb{K}) \to \mathcal{C}([0,1],\mathbb{K}), \quad Sf(x) = f(\sqrt{x}).$$

We have

$$STf(x) = f(\sqrt{x^2}) = f(x)$$
 and $TSf(x) = f(\sqrt{x^2}) = f(x)$,

which means that ST = TS = I.

(7 points)

By a similar argument as in part (a) it follows that S is bounded. Therefore, the operator T is invertible.

(3 points)

(d) Method 1. The space $\mathcal{C}([0,1],\mathbb{K})$ is infinite-dimensional. If T were compact, then we would have $0 \in \sigma(T)$. However, in part (c) we have established that T is invertible, which means that $0 \in \rho(T)$. Therefore, T is not compact.

(5 points)

Method 2. If T is compact, then so is $I = TT^{-1}$. But then the closed unit ball is compact. However, this is not possible because the space $\mathcal{C}([0,1],\mathbb{K})$ is infinite-dimensional. Therefore, T is not compact.

Solution of problem 3 (10 + 10 = 20 points)

Let X be a Hilbert space over $\mathbb{K} = \mathbb{C}$ and let $T \in B(X)$ be of the form $Tx = \langle x, u \rangle v$, where $u, v \in X$ are nonzero.

(a) Show that $T^*y = \langle y, v \rangle u$ for all $y \in X$.

For all $x, y \in X$ we have

$$\langle Tx, y \rangle = \langle \langle x, u \rangle v, y \rangle$$

$$= \langle x, u \rangle \langle v, y \rangle$$

$$= \langle x, u \rangle \overline{\langle y, v \rangle}$$

$$= \langle x, \langle y, v \rangle u \rangle,$$

which shows that $T^*y = \langle y, v \rangle u$.

(10 points; 2 points per correct equality; 2 points for conclusion)

(b) Assuming that u = cv for some $c \in \mathbb{C}$ gives

$$Tx = \bar{c}\langle x, v \rangle v$$
 and $T^*x = c\langle x, v \rangle v$,

for all $x \in X$. If $c \in \mathbb{R}$, then $\bar{c} = c$ so that $Tx = T^*x$ for all $x \in X$ which shows that T is selfadjoint.

(5 points)

Conversely, if T is selfadjoint, then $Tx = T^*x$ for all $x \in X$. In particular, we have $Tv = T^*v$, or, equivalently,

$$\bar{c}\|v\|^2v = c\|v\|^2v,$$

which implies that $\bar{c} = c$ and thus $c \in \mathbb{R}$.

Solution of problem 4 (10 + 5 = 15 points)

(a) Proof of (i) \Rightarrow (ii). Assume that T is bounded. Let (x_n) be a sequence such that $x_n \to 0$ and $Tx_n \to y$. Then it follows that

$$||y|| = ||y - Tx_n + Tx_n|| \le ||y - Tx_n|| + ||Tx_n|| \le ||y - Tx_n|| + ||T|| ||x_n||.$$

Since the right-hand side tends to zero, it follows that y = 0.

(5 points)

Proof of (ii) \Rightarrow (i). Assume that $x_n \to x$ and $Tx_n \to y$. Introduce the new sequence $z_n = x_n - x$. Then it follows that $z_n \to 0$ and $Tz_n \to y - Tx$. By assumption it follows that y - Tx = 0 so that y = Tx. We conclude that the graph of T is closed. Since X and Y are Banach spaces we can apply the Closed Graph Theorem with V = X to conclude that T is bounded.

(5 points)

(b) Let $z \in X$ be arbitrary, and let (x_n) be a sequence in X such that $x_n \to 0$ and $Tx_n \to y$. On the one hand, we have that

$$|\langle Tx_n, z \rangle| \le ||x_n|| \, ||z|| \to 0.$$

On the other hand, we have that

$$\langle Tx_n, z \rangle \to \langle y, z \rangle.$$

(3 points)

By uniqueness of limits, we conclude that $\langle y, z \rangle = 0$. Since $z \in X$ was arbitrary, it follows that $y \in X^{\perp} = \{0\}$ so that y = 0. By part (a) we conclude that T is bounded. (2 points)

Solution of problem 5 (15 points)

Define the map

$$\varphi : \operatorname{span} \{g\} \to \mathbb{C}, \quad \varphi(\lambda g) = \lambda(6+4i).$$

With $\lambda = 1$ we have that $\varphi(g) = 6 + 4i$.

(2 points)

Since ||g|| = 2 we have that

$$\|\varphi\| = \sup_{\lambda \neq 0} \frac{|\varphi(\lambda g)|}{\|\lambda g\|} = \sup_{\lambda \neq 0} \frac{|\lambda|\sqrt{52}}{2|\lambda|} = \sqrt{13}.$$

(8 points)

Now apply the Hahn-Banach theorem to extend φ to the entire space X while preserving the norm.